CLIFTON HIGH SCHOOL MATHEMATICS SUMMER WORKBOOK

CALCULUS HONORS 12th Grade

Completion of this summer work is required on the first day of the school year.

Date Received:	Date Completed:
Student Signature:	
Parent Signature:	

Formula Sheet

Trig Identities

$$\sec x = \frac{1}{\cos x} \qquad \csc x = \frac{1}{\sin x} \qquad \cot x = \frac{1}{\tan x}$$

$$\tan x = \frac{\sin x}{\cos x} \qquad \cot x = \frac{\cos x}{\sin x}$$

$$\cos^2 x + \sin^2 x = 1$$

$$1 + \tan^2 x = \sec^2 x$$

$$1 + \cot^2 x = \csc^2 x$$

$$\sin(2x) = 2\sin x \cos x$$

$$\cos(2x) = \cos^2 x - \sin^2 x$$

$$\cos^2 x = \frac{1}{2}(1 + \cos 2x)$$

$$\sin^2 x = \frac{1}{2}(1 - \cos 2x)$$

Equations of lines

Slope-Intercept form y = mx + bPoint-Slope form $y - y_1 = m(x - x_1)$ Normal line is perpendicular to tangent line

Radicals

If
$$x^2 = a$$
, then $x = \pm \sqrt{a}$

Sum and difference of cubes

$$a^{3} + b^{3} = (a+b)(a^{2} - ab + b^{2})$$
$$a^{3} - b^{3} = (a-b)(a^{2} + ab + b^{2})$$

Exponents	Logarithms
$a^0 = 1, \ a \neq 0$	$\ln 1 = 0$
$a^1 = a$	$\ln e = 1$
$a^m \cdot a^n = a^{m+n}$	$ \ln mn = \ln m + \ln n $
$\frac{a^m}{a^n} = a^{m-n}$	$ \ln \frac{m}{n} = \ln m - \ln n $
$\left(a^{m}\right)^{n}=a^{mn}$	$ \ln m^n = n \ln m $
$a^{-m} = \frac{1}{a^m}, \ a \neq 0$	$e^{\ln x} = x = \ln e^x$
$a^{\frac{m}{n}} = \sqrt[n]{a^m} = \left(\sqrt[n]{a}\right)^m$	$\log_b x = \frac{\ln x}{\ln a}$

Conversion formula:

$$\log_b x = y$$

$$\Leftrightarrow$$

$$b^y = x$$

*In Calculus, it's rarely the calculus that'll get you; it's the algebra. Students entering Calculus must have a strong foundation in algebra. Know how to factor, simplify, expand, manipulate fractions, and solve equations.

Complete the following questions on a separate piece of paper.

Show all work for full credit.

Expand using properties of logarithms.

1.
$$ln x^2y^3$$

2.
$$ln \frac{x+3}{4y}$$

3.
$$ln 3\sqrt{x}$$

Condense into the logarithm of a single expression

5.
$$4 \ln x + 5 \ln y$$

6.
$$\frac{2}{3} \ln a + 5 \ln 2$$

7.
$$ln x - ln 2$$

8.
$$2 \ln 3 - \frac{1}{2} \ln (x^2 + 1)$$

Solve. Give your answer in exact form and rounded to three decimal places.

9.
$$ln(x+3) = 2$$

10.
$$ln x + ln 4 = 1$$

11.
$$ln(x+1) - ln(2x-3) = ln 2$$

12.
$$e^{4x+5} = 1$$

13.
$$2^x = 8^{4x-1}$$

14.
$$100e^{xln4} = 50$$

15. Solve for x (factor first)
$$(x+2)^2(x+6)^3 + (x+2)(x+6)^4 = 0$$

16. Solve for
$$x$$

$$2\sqrt{x+3} = x+3$$

$$\frac{4x^2 - 1}{2x^2 - 5x - 3} \text{ and } \frac{x^2 - 6x + 9}{2x^2 + 5x - 3}$$

18. Solve for a (factor first)
$$a(3a+2)^{\frac{1}{2}} + 2(3a+2)^{\frac{3}{2}} = 0$$

$$\frac{y^2 - 25}{(y+5)^2} \div \frac{2y - 10}{4y + 20}$$

$$\frac{3}{x-4}$$

$$1-\frac{2}{x-4}$$

$$\frac{1}{x^2 - 2x - 3} + \frac{1}{x^2 - 4x + 3}$$

$$\frac{\frac{a}{2} - \frac{8}{a}}{\frac{1}{4} - \frac{1}{a}}$$

$$\frac{5x}{2y+4} - \frac{6}{y^2 + 2y}$$

Factor the following:

24.
$$121x^2 - 225y^4$$

25.
$$x^2 - 8x + 16$$

26.
$$3x^2 + 13x - 10$$

27.
$$6x^2 - 11x + 4$$

28.
$$2x^2 - 16x + 30$$

29.
$$4x^2 + 8x + 3$$

30.
$$16x^2 + 56xy + 49y^2$$

31.
$$8x^4 + 44x^3 + 56x^2$$

32.
$$6x^3y^2 + 54x^2y^2 - 312xy^2$$

Sketch the graph of each piecewise defined function:

33.

$$f(x) = \begin{cases} -2x - 1, & x \le 2 \\ -x + 4, & x > 2 \end{cases}$$

34.
$$f(x) = \begin{cases} -4, & x \le -2 \\ x - 2, & -2 < x < 2 \\ -2x + 4, & x \ge 2 \end{cases}$$

Without a calculator, fill out the following tables. Show all work.

35

33 .	
$sin \pi =$	$csc \pi =$
$\cos \pi =$	$sec \pi =$
$tan \pi =$	$\cot \pi =$

36.

$\sin \pi/2 =$	$csc \pi/2 =$
$\cos \pi/2 =$	$sec \pi/2 =$
$\tan \pi/2 =$	$\cot \pi/2 =$

Write your answer in slope-intercept form.

- **37**. Write the equation of the line through the points (-1,5) and (2,7).
- **38.** Write the equation of the line through the points (-5,6) and (3,6).
- **39.** Write the equation of the line through the points (-4, 1) and (-4, 16).
- **40**. Write the equation of the line parallel to y = -3x + 1 through the point (2, 6).
- **41**. Write the equation of the line perpendicular to y = 5x 3 through the point (-1, 2).
- **42.** Write the equation of the line perpendicular to 3x 2y = 8 through the point (0,4).
- **43**. Write the equation of the line perpendicular to y = 4 through the point (2,-5).
- **44**. Write the equation of the line perpendicular to x = -10 through the point (6,7).

Simplify using properties of exponents.

45.
$$(2x^0y^2)^{-3}2yx^3$$

46.
$$\frac{2y^33xy^3}{3x^2y^4}$$

47.
$$(n^3)^3 2n^{-1}$$